Pipelining: Basic and
Intermediate Concepts

Itis quite a three-pipe problem.

Sir Arthur Conan Doyle
The Adventures of Sherlock Holmes

A-2

Appendix A Pipelining: Basic and Intermediate Concepts

e

A

Introduction

Many readers of this text will have covered the basics of pipelining in another
text (such as our more basic text Computer Organization and Design) or in
another course. Because Chapters 2 and 3 build heavily on this material, readers
should ensure that they are familiar with the concepts discussed in this appendix
before proceeding. As you read Chapter 2, you may find it helpful to turn to this
material for a quick review.

We begin the appendix with the basics of pipelining, including discussing the
data path implications, introducing hazards, and examining the performance of
pipelines. This section describes the basic five-stage RISC pipeline that is the
basis for the rest of the appendix. Section A.2 describes the issue of hazards, why
they cause performance problems and how they can be dealt with. Section A.3
discusses how the simple five-stage pipeline is actually implemented, focusing on
control and how hazards are dealt with.

Section A.4 discusses the interaction between pipelining and various aspects
of instruction set design, including discussing the important topic of exceptions
and their interaction with pipelining. Readers unfamiliar with the concepts of
precise and imprecise interrupts and resumption after exceptions will find this
material useful, since they are key to understanding the more advanced
approaches in Chapter 2.

Section A.5 discusses how the five-stage pipeline can be extended to handle
longer-running floating-point instructions. Section A.6 puts these concepts
together in a case study of a deeply pipelined processor, the MIPS R4000/4400,
including both the eight-stage integer pipeline and the floating-point pipeline.

Section A.7 introduces the concept of dynamic scheduling and the use of
scoreboards to implement dynamic scheduling. It is introduced as a crosscutting
issue, since it can be used to serve as an introduction to the core concepts in
Chapter 2, which focused on dynamically scheduled approaches. Section A.7 is
also a gentle introduction to the more complex Tomasulo’s algorithm covered in
Chapter 2. Although Tomasulo’s algorithm can be covered and understood with-
out introducing scoreboarding, the scoreboarding approach is simpler and easier
to comprehend.

What Is Pipelining?

Pipelining is an implementation technique whereby multiple instructions are
overlapped in execution; it takes advantage of parallelism that exists among the
actions needed to execute an instruction. Today, pipelining is the key implemen-
tation technique used to make fast CPUs.

A pipeline is like an assembly line. In an automobile assembly line, there are
many steps, each contributing something to the construction of the car. Each step
operates in parallel with the other steps, although on a different car. In a computer
pipeline, each step in the pipeline completes a part of an instruction. Like the

A.l Introduction A-3

assembly line, different steps are completing different parts of different instruc-
tions in parallel. Each of these steps is called a pipe stage or a pipe segment. The
stages are connected one to the next to form a pipe—instructions enter at one
end, progress through the stages, and exit at the other end, just as cars would in
an assembly line.

In an automobile assembly line, throughput is defined as the number of cars
per hour and is determined by how often a completed car exits the assembly line.
Likewise, the throughput of an instruction pipeline is determined by how often an
instruction exits the pipeline. Because the pipe stages are hooked together, all the
stages must be ready to proceed at the same time, just as we would require in an
assembly line. The time required between moving an instruction one step down
the pipeline is a processor cycle. Because all stages proceed at the same time, the
length of a processor cycle is determined by the time required for the slowest
pipe stage, just as in an auto assembly line, the longest step would determine the
time between advancing the line. In a computer, this processor cycle is usually
I clock cycle (sometimes it is 2, rarely more).

The pipeline designer’s goal is to balance the length of each pipeline stage,
just as the designer of the assembly line tries to balance the time for each step in
the process. If the stages are perfectly balanced, then the time per instruction on
the pipelined processor—assuming ideal conditions—is equal to

Time per instruction on unpipelined machine
Number of pipe stages

Under these conditions, the speedup from pipelining equals the number of pipe
stages, just as an assembly line with n stages can ideally produce cars » times as
fast. Usually, however, the stages will not be perfectly balanced; furthermore,
pipelining does involve some overhead. Thus, the time per instruction on the
pipelined processor will not have its minimum possible value, yet it can be close.

Pipelining yields a reduction in the average execution time per instruction.
Depending on what you consider as the baseline, the reduction can be viewed as
decreasing the number of clock cycles per instruction (CPI), as decreasing the
clock cycle time, or as a combination. If the starting point is a processor that
takes multiple clock cycles per instruction, then pipelining is usually viewed as
reducing the CPI. This is the primary view we will take. If the starting point is a
processor that takes 1 (long) clock cycle per instruction, then pipelining
decreases the clock cycle time.

Pipelining is an implementation technique that exploits parallelism among
the instructions in a sequential instruction stream. It has the substantial advantage
that, unlike some speedup techniques (see Chapter 4), it is not visible to the pro-
grammer. In this appendix we will first cover the concept of pipelining using a
classic five-stage pipeline; other chapters investigate the more sophisticated
pipelining techniques in use in modern processors. Before we say more about
pipelining and its use in a processor, we need a simple instruction set, which we
introduce next.

A-4

Appendix A Pipelining: Basic and Intermediate Concepts

The Basics of a RISC Instruction Set

Throughout this book we use a RISC (reduced instruction set computer) architec-
ture or load-store architecture to illustrate the basic concepts, although nearly all
the ideas we introduce in this book are applicable to other processors. In this sec-
tion we introduce the core of a typical RISC architecture. In this appendix, and
throughout the book, our default RISC architecture is MIPS. In many places, the
concepts are significantly similar that they will apply to any RISC. RISC archi-
tectures are characterized by a few key properties, which dramatically simplify
their implementation:

s All operations on data apply to data in registers and typically change the
entire register (32 or 64 bits per register).

a The only operations that affect memory are load and store operations that
move data from memory to a register or to memory from a register, respec-
tively. Load and store operations that load or store less than a full register
(e.g., a byte, 16 bits, or 32 bits) are often available.

s The instruction formats are few in number with all instructions typically
being one size.

These simple properties lead to dramatic simplifications in the implementation of
pipelining, which is why these instruction sets were designed this way.

For consistency with the rest of the text, we use MIPS64, the 64-bit version
of the MIPS instruction set. The extended 64-bit instructions are generally desig-
nated by having a D on the start or end of the mnemonic. For example DADD is the
64-bit version of an add instruction, while LD is the 64-bit version of a load
instruction.

Like other RISC architectures, the MIPS instruction set provides 32 registers,
although register 0 always has the value 0. Most RISC architectures, like MIPS,
have three classes of instructions (see Appendix B for more detail):

1. ALU instructions—These instructions take either two registers or a register
and a sign-extended immediate (called ALU immediate instructions, they
have a 16-bit offset in MIPS), operate on them, and store the result into a
third register. Typical operations include add (DADD), subtract (DSUB), and log-
ical operations (such as AND or OR), which do not differentiate between 32-bit
and 64-bit versions. Immediate versions of these instructions use the same
mnemonics with a suffix of I. In MIPS, there are both signed and unsigned
forms of the arithmetic instructions; the unsigned forms, which do not gener-
ate overflow exceptions—and thus are the same in 32-bit and 64-bit mode—
have a U at the end (e.g., DADDU, DSUBU, DADDIU).

2. Load and store instructions—These instructions take a register source, called
the base register, and an immediate field (16-bit in MIPS), called the offset, as
operands. The sum—called the effective address—of the contents of the base
register and the sign-extended offset is used as a memory address. In the case
of a load instruction, a second register operand acts as the destination for the

A.1 Introduction A-5

data loaded from memory. In the case of a store, the second register operand
is the source of the data that is stored into memory. The instructions load
word (LD) and store word (SD) load or store the entire 64-bit register contents.

3. Branches and jumps—Branches are conditional transfers of control. There
are usually two ways of specifying the branch condition in RISC architec-
tures: with a set of condition bits (sometimes called a condition code) or by a
limited set of comparisons between a pair of registers or between a register
and zero. MIPS uses the latter. For this appendix, we consider only compari-
sons for equality between two registers. In all RISC architectures, the branch
destination is obtained by adding a sign-extended offset (16 bits in MIPS) to
the current PC. Unconditional jumps are provided in many RISC architec-
tures, but we will not cover jumps in this appendix.

A Simple Implementation of a RISC Instruction Set

To understand how a RISC instruction set can be implemented in a pipelined
fashion, we need to understand how it is implemented without pipelining. This
section shows a simple implementation where every instruction takes at most 5
clock cycles. We will extend this basic implementation to a pipelined version,
resulting in a much lower CPIL. Our unpipelined implementation is not the most
economical or the highest-performance implementation without pipelining.
Instead, it is designed to lead naturally to a pipelined implementation. Imple-
menting the instruction set requires the introduction of several temporary regis-
ters that are not part of the architecture; these are introduced in this section to
simplify pipelining. Our implementation will focus only on a pipeline for an inte-
ger subset of a RISC architecture that consists of load-store word, branch, and
integer ALU operations.

Every instruction in this RISC subset can be implemented in at most 5 clock
cycles. The 5 clock cycles are as follows.

1. Instruction fetch cycle (IF):

Send the program counter (PC) to memory and fetch the current instruction
from memory. Update the PC to the next sequential PC by adding 4 (since
each instruction is 4 bytes) to the PC.

2. Instruction decode/register fetch cycle (ID):

Decode the instruction and read the registers corresponding to register
source specifiers from the register file. Do the equality test on the registers
as they are read, for a possible branch. Sign-extend the offset field of the
instruction in case it is needed. Compute the possible branch target address
by adding the sign-extended offset to the incremented PC. In an aggressive
implementation. which we explore later, the branch can be completed.at the
end of this stage, by storing the branch-target address into the PC, if the
condition test yielded true.

Decoding is done in parallel with reading registers, which is possible
because the register specifiers are at a fixed location in a RISC architecture.

A-6

Appendix A Pipelining: Basic and Intermediate Concepts

This technique is known as fixed-field decoding. Note that we may read a
register we don’t use, which doesn’t help but also doesn’t hurt performance.
(It does waste energy to read an unneeded register, and power-sensitive
designs might avoid this.) Because the immediate portion of an instruction
is also located in an identical place, the sign-extended immediate is also cal-
culated during this cycle in case it is needed.

3. Execution/effective address cycle (EX):

The ALU operates on the operands prepared in the prior cycle, performing
one of three functions depending on the instruction type.

s Memory reference: The ALU adds the base register and the offset to form
the effective address.

a Register-Register ALU instruction: The ALU performs the operation
specified by the ALU opcode on the values read from the register file.

s Register-Immediate ALU instruction: The ALU performs the operation
specified by the ALU opcode on the first value read from the register file
and the sign-extended immediate.

In a load-store architecture the effective address and execution cycles
can be combined into a single clock cycle, since no instruction needs to
simultaneously calculate a data address and perform an operation on the
data.

4. Memory access (MEM):

If the instruction is a load, memory does a read using the effective address
computed in the previous cycle. If it is a store, then the memory writes the
data from the second register read from the register file using the effective
address.

5. Write-back cycle (WB):
m Register-Register ALU instruction or Load instruction:

Write the result into the register file, whether it comes from the memory
system (for a load) or from the ALU (for an ALU instruction).

In this implementation, branch instructions require 2 cycles, store instructions
require 4 cycles, and all other instructions require 5 cycles. Assuming a branch
frequency of 12% and a store frequency of 10%, a typical instruction distribution
leads to an overall CPI of 4.54. This implementation, however, is not optimal
either in achieving the best performance or in using the minimal amount of hard-
ware given the performance level; we leave the improvement of this design as an
exercise for you and instead focus on pipelining this version.

The Classic Five-Stage Pipeline for a RISC Processor

We can pipeline the execution described above with almost no changes by simply
starting a new instruction on each clock cycle. (See why we chose this design!)

A.l1 Introduction A-7

Each of the clock cycles from the previous section becomes a pipe stage—a cycle
in the pipeline. This results in the execution pattern shown in Figure A.1, which
is the typical way a pipeline structure is drawn. Although each instruction takes 5
clock cycles to complete, during each clock cycle the hardware will initiate a new
instruction and will be executing some part of the five different instructions.

You may find it hard to believe that pipelining is as simple as this; it’s not. In
this and the following sections, we will make our RISC pipeline “real” by dealing
with problems that pipelining introduces.

To start with, we have to determine what happens on every clock cycle of the
processor and make sure we don’t try to perform two different operations with
the same data path resource on the same clock cycle. For example, a single ALU
cannot be asked to compute an effective address and perform a subtract operation
at the same time. Thus, we must ensure that the overlap of instructions in the
pipeline cannot cause such a conflict. Fortunately, the simplicity of a RISC
instruction set makes resource evaluation relatively easy. Figure A.2 shows a
simplified version of a RISC data path drawn in pipeline fashion. As you can see,
the major functional units are used in different cycles, and hence overlapping the
execution of multiple instructions introduces relatively few conflicts. There are
three observations on which this fact rests.

First, we use separate instruction and data memories, which we would typi-
cally implement with separate instruction and data caches (discussed in Chapter
5). The use of separate caches eliminates a conflict for a single memory that
would arise between instruction fetch and data memory access. Notice that if our
pipelined processor has a clock cycle that is equal to that of the unpipelined ver-
sion, the memory system must deliver five times the bandwidth. This increased
demand is one cost of higher performance.

Second, the register file is used in the two stages: one for reading in ID and
one for writing in WB. These uses are distinct, so we simply show the register file
in two places. Hence, we need to perform two reads and one write every clock
cycle. To handle reads and a write to the same register (and for another reason,

Clock number

Instruction number 1 2 3 4 5 6 7 8 9
Instruction i IF ID EX MEM WB

Instruction i + 1 IF 1D EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction / + 3 IF ID EX MEM WB
Instruction i + 4 IF ID EX MEM WB

Figure A.1 Simple RISC pipeline. On each clock cycle, another instruction is fetched and begins its 5-cycle execu-
tion. If an instruction is started every clock cycle, the performance will be up to five times that of a processor that is
not pipelined. The names for the stages in the pipeline are the same as those used for the cycles in the unpipelined
implementation: IF = instruction fetch, ID = instruction decode, EX = execution, MEM = memory access, and WB =

write back.

A-8

Program execution order (in instructions)

Appendix A Pipelining: Busic and Intermediate Concepts

Time (in clock cycles)

cci i coz

CC3 CC4 CCs : CCs cCc7 . CCs : CC9

Figure A.2 The pipeline can be thought of as a series of data paths shifted in time. This shows the overlap among
the parts of the data path, with clock cycle 5 (CC 5) showing the steady-state situation. Because the register file is
used as a source in the ID stage and as a destination in the WB stage, it appears twice. We show that it is read in one
part of the stage and written in another by using a solid line, on the right or left, respectively, and a dashed line on
the other side.The abbreviation IM is used for instruction memory, DM for data memory, and CC for clock cycle.

which will become obvious shortly), we perform the register write in the first half
of the clock cycle and the read in the second half.

Third, Figure A.2 does not deal with the PC. To start a new instruction every
clock, we must increment and store the PC every clock, and this must be done
during the IF stage in preparation for the next instruction. Furthermore, we must
also have an adder to compute the potential branch target during ID. One further
problem is that a branch does not change the PC until the ID stage. This causes a
problem, which we ignore for now, but will handle shortly.

Although it is critical to ensure that instructions in the pipeline do not attempt
to use the hardware resources at the same time, we must also ensure that instruc-
tions in different stages of the pipeline do not interfere with one another. This
separation is done by introducing pipeline registers between successive stages of
the pipeline, so that at the end of a clock cycle all the results from a given stage
are stored into a register that is used as the input to the next stage on the next
clock cycle. Figure A.3 shows the pipeline drawn with these pipeline registers.

A.l1 Introduction A-9

Time (in clock cycles)

CC1 cCc2 CC3 CC4 CCs CCs

eg

"

M g

{
[
[]
5 & [
l_rl :
! J | |

Figure A.3 A pipeline showing the pipeline registers between successive pipeline stages. Notice that the regis-
ters prevent interference between two different instructions in adjacent stages in the pipeline.The registers also play
the critical role of carrying data for a given instruction from one stage to the other.The edge-triggered property of
registers—that is, that the values change instantaneously on a clock edge—is critical. Otherwise, the data from one
instruction could interfere with the execution of another!

Although many figures will omit such registers for simplicity, they are
required to make the pipeline operate properly and must be present. Of course,
similar registers would be needed even in a multicycle data path that had no pipe-
lining (since only values in registers are preserved across clock boundaries). In
the case of a pipelined processor, the pipeline registers also play the key role of
carrying intermediate results from one stage to another where the source and des-
tination may not be directly adjacent. For example, the register value to be stored
during a store instruction is read during ID, but not actually used until MEM; it is
passed through two pipeline registers to reach the data memory during the MEM
stage. Likewise, the result of an ALU instruction is computed during EX, but not
actually stored until WB; it arrives there by passing through two pipeline regis-
ters. It is sometimes useful to name the pipeline registers, and we follow the

A-10

Appendix A Pipelining: Basic and Intermediate Concepts

convention of naming them by the pipeline stages they connect, so that the regis-
ters are called IF/ID. ID/EX, EX/MEM, and MEM/WB.

Basic Performance Issues in Pipelining

Pipelining increases the CPU instruction throughput—the number of instructions
completed per unit of time—but it does not reduce the execution time of an indi-
vidual instruction. In fact, it usually slightly increases the execution time of each
instruction due to overhead in the control of the pipeline. The increase in instruc-
tion throughput means that a program runs faster and has lower total execution
time, even though no single instruction runs faster!

The fact that the execution time of each instruction does not decrease puts
limits on the practical depth of a pipeline, as we will see in the next section. In
addition to limitations arising from pipeline latency, limits arise from imbalance
among the pipe stages and from pipelining overhead. Imbalance among the pipe
stages reduces performance since the clock can run no faster than the time needed
for the slowest pipeline stage. Pipeline overhead arises from the combination of
pipeline register delay and clock skew. The pipeline registers add setup time,
which is the time that a register input must be stable before the clock signal that
triggers a write occurs, plus propagation delay to the clock cycle. Clock skew.
which is maximum delay beiween when the clock arrives at any two registers.
also contributes to the lower limit on the clock cycle. Once the clock cycle is as
small as the sum of the clock skew and latch overhead, no further pipelining is
useful, since there is no time left in the cycle for useful work. The interested
reader should see Kunkel and Smith [1986]. As we will see in Chapter 2, this
overhead affected the performance gains achieved by the Pentium 4 versus the
Pentium 1L

Example

Answer

Consider the unpipelined processor in the previous section. Assume that it has a |
ns clock cycle and that it uses 4 cycles for ALU operations and branches and 5
cycles for memory operations. Assume that the relative frequencies of these oper-
ations are 40%, 20%, and 40%, respectively. Suppose that due to clock skew and
setup, pipelining the processor adds 0.2 ns of overhead to the clock. Ignoring any
latency impact. how much speedup in the instruction execution rate will we gain
from a pipeline?

The average instruction execution time on the unpipelined processor is

Average instruction execution time = Clock cycle x Average CPI

I ns x ((40% + 20%) x4 + 40% x 5)
1 nsx4.4

=44 ns

i}

It

In the pipelined implementation, the clock must run at the speed of the slowest
stage plus overhead, which will be T + 0.2 or 1.2 ns; this is the average instruction
execution time. Thus, the speedup from pipelining is

A.2 The Major Hurdle of Pipelining—Pipeline Hazards A-11

Average instruction time unpipelined
Average instruction time pipelined

Speedup from pipelining

The 0.2 ns overhead essentially establishes a limit on the effectiveness of pipelin-
ing. If the overhead is not affected by changes in the clock cycle, Amdahl’s Law
tells us that the overhead limits the speedup.

This simple RISC pipeline would function just fine for integer instructions if
every instruction were independent of every other instruction in the pipeline. In
reality, instructions in the pipeline can depend on one another; this is the topic of
the next section.

A)Z/"’/ﬂié Major Hurdle of Pipelining—Pipeline Hazards

P

There are situations, called hazards, that prevent the next instruction in the
instruction stream from executing during its designated clock cycle. Hazards
reduce the performance from the ideal speedup gained by pipelining. There are
three classes of hazards:

1. Structural hazards arise from resource conflicts when the hardware cannot
support all possible combinations of instructions simultaneously in over-
lapped execution.

2. Data hazards arise when an instruction depends on the results of a previous
instruction in a way that is exposed by the overlapping of instructions in the
pipeline.

3. Control hazards arise from the pipelining of branches and other instructions
that change the PC.

Hazards in pipelines can make it necessary to stall the pipeline. Avoiding a
hazard often requires that some instructions in the pipeline be allowed to proceed
while others are delayed. For the pipelines we discuss in this appendix, when an
instruction is stalled, all instructions issued later than the stalled instruction—and
hence not as far along in the pipeline—are also stalled. Instructions issued earlier
than the stalled instruction—and hence farther along in the pipeline—must con-
tinue, since otherwise the hazard will never clear. As a result, no new instructions
are fetched during the stall. We will see several examples of how pipeline stalls
operate in this section—don’t worry, they aren’t as complex as they might sound!

Performance of Pipelines with Stalls

A stall causes the pipeline performance to degrade from the ideal performance.
Let’s look at a simple equation for finding the actual speedup from pipelining,
starting with the formula from the previous section.

A-12

Speedup from pipelining

Appendix A Pipelining: Basic and Intermediate Concepts

Average instruction time unpipelined
Average instruction time pipelined

Speedup from pipelining

_ CPI unpipelined x Clock cycle unpipelined
" CPI pipelined x Clock cycle pipelined

CPI unpipelined _ Clock cycle unpipelined
CPI pipelined Clock cycle pipelined

Pipelining can be thought of as decreasing the CPI or the clock cycle time. Since
it is traditional to use the CPI to compare pipelines, let’s start with that assump-
tion. The ideal CPI on a pipelined processor is almost always 1. Hence, we can
compute the pipelined CPI:

CPI pipelined = Ideal CPI + Pipeline stall clock cycles per instruction

1 + Pipeline stall clock cycles per instruction

If we ignore the cycle time overhead of pipelining and assume the stages are per-
fectly balanced, then the cycle time of the two processors can be equal, leading to

CPI unpipelined
1 + Pipeline stall cycles per instruction

Speedup =

One important simple case is where all instructions take the same number of
cycles, which must also equal the number of pipeline stages (also called the deprh
of the pipeline). In this case, the unpipelined CPI is equal to the depth of the pipe-
line, leading to

Pipeline depth
1 + Pipeline stall cycles per instruction

Speedup =

If there are no pipeline stalls, this leads to the intuitive result that pipelining can
improve performance by the depth of the pipeline.

Alternatively, if we think of pipelining as improving the clock cycle time,
then we can assume that the CPI of the unpipelined processor, as well as that of
the pipelined processor, is 1. This leads to

CPI unpipelined » Clock cycle unpipelined
CPI pipelined Clock cycle pipelined

1 Clock cycle unpipelined
I + Pipeline stall cycles per instruction Clock cycle pipelined

In cases where the pipe stages are perfectly balanced and there is no overhead,
the clock cycle on the pipelined processor is smaller than the clock cycle of the
unpipelined processor by a factor equal to the pipelined depth:

Clock cycle unpipelined
Pipeline depth

I

Clock cycle pipelined

Clock cycle unpipelined
Clock cycle pipelined

H

Pipeline depth

Speedup from pipelining =

A.2 The Major Hurdle of Pipelining—Pipeline Hazards A-13

This leads to the following:

1 Clock cycle unpipelined
1 + Pipeline stall cycles per instruction Clock cycle pipelined

= ! x Pipeline depth
~ 1 + Pipeline stall cycles per instruction P P

Thus, if there are no stalls, the speedup is equal to the number of pipeline stages,
matching our intuition for the ideal case.

Structural Hazards

When a processor is pipelined, the overlapped execution of instructions requires
pipelining of functional units and duplication of resources to allow all possible
combinations of instructions in the pipeline. If some combination of instructions
cannot be accommodated because of resource conflicts, the processor is said to
have a siructural hazard.

The most common instances of structural hazards arise when some functional
unit is not fully pipelined. Then a sequence of instructions using that unpipelined
unit cannot proceed at the rate of one per clock cycle. Another common way that
structural hazards appear is when some resource has not been duplicated enough
to allow all combinations of instructions in the pipeline to execute. For example,
a processor may have only one register-file write port, but under certain circum-
stances, the pipeline might want to perform two writes in a clock cycle. This will
generate a structural hazard.

When a sequence of instructions encounters this hazard, the pipeline will stall
one of the instructions until the required unit is available. Such stalls will increase
the CPI from its usual ideal value of 1.

Some pipelined processors have shared a single-memory pipeline for data
and instructions. As a result, when an instruction contains a data memory refer-
ence, it will conflict with the instruction reference for a later instruction, as
shown in Figure A.4. To resolve this hazard, we stall the pipeline for I clock
cycle when the data memory access occurs. A stall is commonly called a pipe-
line bubble or just bubble, since it floats through the pipeline taking space but
carrying no useful work. We will see another type of stall when we talk about
data hazards.

Designers often indicate stall behavior using a simple diagram with only the
pipe stage names, as in Figure A.5. The form of Figure A.S shows the stall by
indicating the cycle when no action occurs and simply shifting instruction 3 to
the right (which delays its execution start and finish by 1 cycle). The effect of the
pipeline bubble is actually to occupy the resources for that instruction slot as it
travels through the pipeline.

Example

Let's see how much the load structural hazard might cost. Suppose that data ref-
erences constitute 40% of the mix. and that the ideal CPI of the pipelined proces-
sor, ignoring the structural hazard, is 1. Assume that the processor with the
structural hazard has a clock rate that is 1.05 times higher than the clock rate of

A-14

Load

Instruction 1

Instruction 2

Instruction 3

instruction 4

Appendix A Pipelining: Basic and Intermediate Concepts

Time (in clock cycles)

CC1

Mem

ccz i ccs : cc4 i ccs . cce . cC7 © cos

Mem

Mem

Mem

Figure A.4 A processor with only one memory port will generate a conflict whenever a memory reference
occurs. In this example the load instruction uses the memory for a data access at the same time instruction 3 wants
to fetch an instruction from memory.

Answer

the processor without the hazard. Disregarding any other performance losses, is
the pipeline with or without the structural hazard faster, and by how much?

There are several ways we could solve this problem. Perhaps the simplest is to
compute the average instruction time on the two processors:

Average instruction time = CPI x Clock cycle time

Since it has no stalls, the average instruction time for the ideal processor is sim-
ply the Clock cycle time;y,,. The average instruction time for the processor with
the structural hazard is
Average instruction time = CPI x Clock cycle time
Clock cycle time
1.05
1.3 x Clock cycle time; .

ideal

It

(1+04x1)x

A.2 The Major Hurdle of Pipelining—Pipeline Hazards A-15

Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9 10
Load instruction IF D EX MEM WB

Instruction i + 1 IF D EX MEM WB

Tnstruction i + 2 IF D EX MEM WB

Instruction i + 3 stall IF D EX MEM WB
Tnstruction + 4 IF D EX MEM WB
Instruction i + 5 IF D EX MEM
Instruction i + 6 IF ID EX

Figure A.5 A pipeline stalled for a structural hazard—a load with one memory port. As shown here, the load
instruction effectively steals an instruction-fetch cycle, causing the pipeline to stall—no instruction is initiated on
clock cycle 4 (which normally would initiate instruction i + 3). Because the instruction being fetched is stalled, all
other instructions in the pipeline before the stalled instruction can proceed normally. The stall cycle will continue to
pass through the pipeline, so that no instruction completes on clock cycle 8. Sometimes these pipeline diagrams are
drawn with the stall occupying an entire horizontal row and instruction 3 being moved to the next row; in either
case, the effect is the same, since instruction i + 3 does not begin execution until cycle 5. We use the form above,
since it takes less space in the figure. Note that this figure assumes that instructioni + 1 and i + 2 are not memory
references.

Clearly, the processor without the structural hazard is faster; we can use the ratio
of the average instruction times to conclude that the processor without the hazard
is 1.3 times faster.

As an alternative to this structural hazard, the designer could provide a sepa-
rate memory access for instructions, either by splitting the cache into separate
instruction and data caches. or by using a set of buffers, usually called instruction
buffers, to hold instructions. Chapter 5 discusses both the split cache and instruc-
tion buffer ideas.

If all other factors are equal, a processor without structural hazards will
always have a lower CP1. Why, then, would a designer allow structural hazards?
The primary reason is to reduce cost of the unit, since pipelining all the func-
tional units, or duplicating them, may be too costly. For example, processors that
support both an instruction and a data cache access every cycle (to prevent the
structural hazard of the above example) require twice as much total memory
bandwidth and often have higher bandwidth at the pins. Likewise, fully pipelin-
ing a floating-point multiplier consumes lots of gates. If the structural hazard is
rare, it may not be worth the cost to avoid it.

Data Hazards

A major effect of pipelining is to change the relative timing of instructions by
overlapping their execution. This overlap introduces data and control hazards.

A-16 Appendix A Pipelining: Basic and Intermediate Concepts

Data hazards occur when the pipeline changes the order of read/write accesses to
operands so that the order differs from the order seen by sequentially executing
instructions on an unpipelined processor. Consider the pipelined execution of
these instructions:

DADD R1,R2,R3
DSUB R4,R1,R5
AND R6,R1,R7
OR R8,R1,R9
XOR R10,R1,R11

All the instructions after the DADD use the result of the DADD instruction. As shown
in Figure A.6, the DADD instruction writes the value of R1 in the WB pipe stage,
but the DSUB instruction reads the value during its ID stage. This problem is
called a data hazard. Unless precautions are taken to prevent it, the DSUB instruc-
tion will read the wrong value and try to use it. In fact, the value used by the DSUB

Time (in clock cycles)

CC4 CCs CcCe

JLE==T

AND R6, R1, R7 M © Reg ’ oM

L

XOR R10, R1, R11

Q

z

]
e @ |

DADD R1, R2, R3

DSUB R4, R1, R5

Program execution order (in instructions)

l

Figure A.6 The use of the result of the DADD instruction in the next three instructions causes a hazard, since the
register is not written until after those instructions read it.

A.2 The Major Hurdle of Pipelining—Pipeline Hazards A-17

instruction is not even deterministic: Though we might think it logical to assume
that DSUB would always use the value of R1 that was assigned by an instruction
prior to DADD, this is not always the case. If an interrupt should occur between the
DADD and DSUB instructions, the WB stage of the DADD will complete, and the
value of R1 at that point will be the result of the DADD. This unpredictable
behavior is obviously unacceptable.

The AND instruction is also affected by this hazard. As we can see from
Figure A.6, the write of R1 does not complete until the end of clock cycle 5.
Thus, the AND instruction that reads the registers during clock cycle 4 will receive
the wrong results.

The XOR instruction operates properly because its register read occurs in
clock cycle 6, after the register write. The OR instruction also operates without
incurring a hazard because we perform the register file reads in the second half of
the cycle and the writes in the first half.

The next subsection discusses a technique to eliminate the stalls for the haz-
ard involving the DSUB and AND instructions.

Minimizing Data Hazard Stalls by Forwarding

The problem posed in Figure A.6 can be solved with a simple hardware tech-
nique called forwarding (also called bypassing and sometimes short-circuiting).
The key insight in forwarding is that the result is not really needed by the DSUB
until after the DADD actually produces it. If the result can be moved from the pipe-
line register where the DADD stores it to where the DSUB needs it, then the need for
a stall can be avoided. Using this observation, forwarding works as follows:

1. The ALU result from both the EX/MEM and MEM/WB pipeline registers is
always fed back to the ALU inputs.

2. If the forwarding hardware detects that the previous ALU operation has writ-
ten the register corresponding to a source for the current ALU operation, con-
trol logic selects the forwarded result as the ALU input rather than the value
read from the register file.

Notice that with forwarding, if the DSUB is stalled, the DADD will be completed
and the bypass will not be activated. This relationship is also true for the case of
an interrupt between the two instructions.

As the example in Figure A.6 shows, we need to forward results not only
from the immediately previous instruction, but possibly from an instruction that
started 2 cycles earlier. Figure A.7 shows our example with the bypass paths in
place and highlighting the timing of the register read and writes. This code
sequence can be executed without stalls.

Forwarding can be generalized to include passing a result directly to the func-
tional unit that requires it: A result is forwarded from the pipeline register corre-
sponding to the output of one unit to the input of another, rather than just from

A-18 Appendix A Pipelining: Basic and Intermediate Concepts

Time (in clock cycles)

CC1 cC2 CC3 CC4 CCs CC#8

DADD R1, R2, R3 M Reg

DSUB R4, R1, RS M

1

Program execution order (in instructions)

AND R6, R1, R7 : 3 T

ORR8, R1, R9 M © Reg i’

XOR R10, R1, R11

- L

Figure A.7 A set of instructions that depends on the DADD result uses forwarding paths to avoid the data hazard.
The inputs for the DSUB and AND instructions forward from the pipeline registers to the first ALU input.The OR receives
its result by forwarding through the register file, which is easily accomplished by reading the registers in the second
half of the cycle and writing in the first half, as the dashed lines on the registers indicate. Notice that the forwarded
result can go to either ALU input; in fact, both ALU inputs could use forwarded inputs from either the same pipeline
register or from different pipeline registers. This would occur, for example, if the AND instruction was AND R6,R1,R4.

the result of a unit to the input of the same unit. Take, for example, the following

sequence:
DADD R1,R2,R3
LD R4,0(R1)
SD R4,12(R1)

To prevent a stall in this sequence, we would need to forward the values of the
ALU output and memory unit output from the pipeline registers to the ALU and
data memory inputs. Figure A.8 shows all the forwarding paths for this example.

A.2 The Major Hurdle of Pipelining—Pipeline Hazards A-19

Time (in clock cycles)

CC1 cc2 CC3 CcC4 CCs CCs

I

-

DADDR1, R2,R3| M " Reg ~[pM [—1 [—1 Reg
LD R4, O(R1) Mo " Reg ——I: om [—1® Reg |

DM

Program execution order (in instructions)

SD R4,12(R1)

" Reg

—"u |

:
o
\:

Figure A.8 Forwarding of operand required by stores during MEM. The result of the load is forwarded from the
memory output to the memory input to be stored. In addition, the ALU output is forwarded to the ALU input for the
address calculation of both the load and the store (this is no different than forwarding to another ALU operation). If
the store depended on an immediately preceding ALU operation (not shown above), the result would need to be for-
warded to prevent a stall.

Data Hazards Requiring Stalls

Unfortunately, not all potential data hazards can be handled by bypassing.
Consider the following sequence of instructions:

LD R1,0(R2)
DSuB R4,R1,R5
AND R6,R1,R7
OR R8,R1,R9

The pipelined data path with the bypass paths for this example is shown in
Figure A.9. This case is different from the situation with back-to-back ALU
operations. The LD instruction does not have the data until the end of clock cycle
4 (its MEM cycle), while the DSUB instruction needs to have the data by the
beginning of that clock cycle. Thus, the data hazard from using the result of a
load instruction cannot be completely eliminated with simple hardware. As Fig-
ure A.9 shows, such a forwarding path would have to operate backward in
time—a capability not yet available to computer designers! We can forward the
result immediately to the ALU from the pipeline registers for use in the AND oper-
ation, which begins 2 clock cycles after the load. Likewise, the OR instruction has
no problem, since it receives the value through the register file. For the DSUB

A-20

Program execution order (in instructions)

Appendix A Pipelining: Basic and Intermediate Concepts

LD R1, O(R2)

DSUB R4, R1, RS

AND RS6, R1, R7

OR R8, R1, R9

Time (in clock cycles)

CC1 cc2 CC3 CC4 CCs

LJ (-

Figure A.9 The load instruction can bypass its results to the AND and OR instructions, but not to the DSUB, since
that would mean forwarding the result in “negative time.”

instruction, the forwarded result arrives too late—at the end of a clock cycle.
when it is needed at the beginning.

The load instruction has a delay or latency that cannot be eliminated by for-
warding alone. Instead, we need to add hardware, called a pipeline interlock. to
preserve the correct execution pattern. In general, a pipeline interlock detects a
hazard and stalls the pipeline until the hazard is cleared. In this case, the interlock
stalls the pipeline, beginning with the instruction that wants to use the data until
the source instruction produces it. This pipeline interlock introduces a stall or
bubble, just as it did for the structural hazard. The CPI tor the stalled instruction
increases by the length of the stall (1 clock cycle in this case).

Figure A.10 shows the pipeline before and after the stall using the names of the
pipeline stages. Because the stall causes the instructions starting with the DSUB to
move 1 cycle later in time, the forwarding to the AND instruction now goes
through the register file, and no forwarding at all is needed for the OR instruction.
The insertion of the bubble causes the number of cycles to complete this
sequence to grow by one. No instruction is started during clock cycle 4 (and none
finishes during cycle 6).

A.2 The Major Hurdle of Pipelining—Pipeline Hazards A-21

LD R1,0(R2) IF ID EX MEM WB

DSUB R4,R1,R5 IF ID EX MEM WB

AND R6,R1,R7 IF ID EX MEM WB

0OR R8,R1,R9 IF D EX MEM WB

LD R1,0(R2) IF ID EX MEM WB

DSUB R4,R1,R5 IF ID stall EX MEM WB

AND R6,R1,R7 IF stall ID EX MEM WB

OR R8,R1,R9 stail IF ID EX MEM WB

Figure A.10 In the top half, we can see why a stall is needed: The MEM cycle of the load produces a value that is
needed in the EX cycle of the DSUB, which occurs at the same time. This problem is solved by inserting a stall, as
shown in the bottom half.

Branch Hazards

Control hazards can cause a greater performance loss for our MIPS pipeline than
do data hazards. When a branch is executed, it may or may not change the PC to
something other than its current value plus 4. Recall that if a branch changes the
PC to its target address, it is a taken branch; if it falls through, it is not taken, or
untaken. If instruction i is a taken branch, then the PC is normally not changed
until the end of ID, after the completion of the address caiculation and com-
parison.

Figure A.11 shows that the simplest method of dealing with branches is to
redo the fetch of the instruction following a branch, once we detect the branch
during ID (when instructions are decoded). The first IF cycle is essentially a stall,
because it never performs useful work. You may have noticed that if the branch is
untaken, then the repetition of the IF stage is unnecessary since the correct instruc-
tion was indeed fetched. We will develop several schemes to take advantage of this
fact shortly.

One stall cycle for every branch will yield a performance loss of 10% to 30%
depending on the branch frequency, so we will examine some techniques to deal
with this loss.

Branch instruction IF ID EX MEM WB

Branch successor IF IF ID EX MEM WB
Branch successor + 1 IF ID EX MEM
Branch successor + 2 IF ID EX

Figure A.11 Abranch causes a 1-cycle stall in the five-stage pipeline. The instruction
after the branch is fetched, but the instruction is ignored, and the fetch is restarted
once the branch target is known. It is probably obvious that if the branch is not taken,
the second IF for branch successor is redundant. This will be addressed shortly.

A-22 Appendix A Pipelining: Basic and Intermediate Concepts

Reducing Pipeline Branch Penalties

There are many methods for dealing with the pipeline stalls caused by branch
delay; we discuss four simple compile time schemes in this subsection. In these
four schemes the actions for a branch are static—they are fixed for each branch
during the entire execution. The software can try to minimize the branch penalty
using knowledge of the hardware scheme and of branch behavior. Chapters 2 and
3 look at more powerful hardware and software techniques for both static and
dynamic branch prediction.

The simplest scheme to handle branches is to freeze or flush the pipeline.
holding or deleting any instructions after the branch until the branch destination
is known. The attractiveness of this solution lies primarily in its simplicity both
for hardware and software. It is the solution used earlier in the pipeline shown in
Figure A.11. In this case the branch penalty is fixed and cannot be reduced by
software.

A higher-performance, and only slightly more complex, scheme is to treat
every branch as not taken, simply allowing the hardware to continue as if the
branch were not executed. Here, care must be taken not to change the processor
state until the branch outcome is definitely known. The complexity of this
scheme arises from having to know when the state might be changed by an
instruction and how to “back out” such a change.

In the simple five-stage pipeline, this predicted-not-taken or predicted-
untaken scheme is implemented by continuing to fetch instructions as if the
branch were a normal instruction. The pipeline looks as if nothing out of the ordi-
nary is happening. If the branch is taken, however, we need to turn the fetched
instruction into a no-op and restart the fetch at the target address. Figure A.12
shows both situations.

Untaken branch instruction IF ID EX MEM WB

Instruction / + 1 IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB
Instruction i + 4 IF ID EX MEM WB
Taken branch instruction IF ID EX MEM WB

Instruction i + 1 IF idle idle idle idle

Branch target IF ID EX MEM WB

Branch target + 1 IF ID EX MEM WB

Branch target + 2 IF ID EX MEM WB

Figure A.12 The predicted-not-taken scheme and the pipeline sequence when the branch is untaken (top) and
taken (bottom). When the branch is untaken, determined during ID, we have fetched the fall-through and just con-
tinue. If the branch is taken during ID, we restart the fetch at the branch target. This causes all instructions following
the branch to stall 1 clock cycle.

A.2 The Major Hurdle of Pipelining—Pipeline Hazards A-23

An alternative scheme is to treat every branch as taken. As soon as the branch
is decoded and the target address is computed, we assume the branch to be taken
and begin fetching and executing at the target. Because in our five-stage pipeline
we don’t know the target address any earlier than we know the branch outcome,
there is no advantage in this approach for this pipeline. In some processors—
especially those with implicitly set condition codes or more powerful (and hence
slower) branch conditions—the branch target is known before the branch out-
come, and a predicted-taken scheme might make sense. In either a predicted-
taken or predicted-not-taken scheme, the compiler can improve performance by
organizing the code so that the most frequent path matches the hardware’s
choice. Our fourth scheme provides more opportunities for the compiler to
improve performance.

A fourth scheme in use in some processors is called delayed branch. This
technique was heavily used in early RISC processors and works reasonably well
in the five-stage pipeline. In a delayed branch, the execution cycle with a branch
delay of one is

branch instruction
sequential successor;
branch target if taken

The sequential successor is in the branch delay slot. This instruction is executed
whether or not the branch is taken. The pipeline behavior of the five-stage pipe-
line with a branch delay is shown in Figure A.13. Although it is possible to have
a branch delay longer than one, in practice. almost all processors with delayed
branch have a single instruction delay: other techniques are used if the pipeline
has a longer potential branch penalty.

I ntaken branch instruction IF ID EX MEM WB

Branch delay instruction (/ + 1) IF ID EX MEM WB

[nstruction i + 2 IF ID EX MEM WB

fnstruction i + 3 IF ID EX MEM WB
Instruction i + 4 IF ID EX MEM WB
Taken branch instruction IF ID EX MEM WB

Branch delay instruction (i + 1) IF D EX MEM WB

Branch target IF ID EX MEM WB

Branch target + 1 IF ID EX MEM WB
Branch target + 2 IF ID EX MEM WB

Figure A.13 The behavior of a delayed branch is the same whether or not the branch is taken. The instructions in
the delay slot (there is only one delay slot for MIPS) are executed. If the branch is untaken, execution continues with
the instruction after the branch delay instruction; if the branch is taken, execution continues at the branch target.
When the instruction in the branch delay slot is also a branch, the meaning is unclear: If the branch is not taken, what
should happen to the branch in the branch delay slot? Because of this confusion, architectures with delay branches
often disallow putting a branch in the delay slot.

A-24

Appendix A Pipelining: Basic and Intermediate Concepts

The job of the compiler is to make the successor instructions valid and useful.
A number of optimizations are used. Figure A.14 shows the three ways in which
the branch delay can be scheduled.

The limitations on delayed-branch scheduling arise from (1) the restrictions on
the instructions that are scheduled into the delay slots and (2) our ability to predict
at compile time whether a branch is likely to be taken or not. To improve the ability
of the compiler to fill branch delay slots, most processors with conditional branches
have introduced a canceling or nullifying branch. In a canceling branch, the instruc-
tion includes the direction that the branch was predicted. When the branch behaves
as predicted, the instruction in the branch delay slot is simply executed as it would

(a) From before (b) From target {c) From fall-through
DADD R1, R2, R3 DADD R1, R2, R3
DSUB R4, RS, R6
if R2 = 0 then — if R1 =0 then
if R1 =0 then ORR7.R8, R9

becomes becomes becomes

DSUB R4, R5, R6

-~

DADD Rt1, R2, R3

if R2 = 0 then

[DADD R1, R2, R3]

if R1 =0 then

OR A7, RS, RY

DADD R1, R2, R3

if R1 =0 then

DSUB R4, RS, R6

DSUB R4, R5, R6

Figure A.14 Scheduling the branch delay slot. The top box in each pair shows the
code before scheduling; the bottom box shows the scheduled code. In (a) the delay slot
is scheduled with an independent instruction from before the branch. This is the best
choice. Strategies (b) and (c) are used when (a) is not possible. In the code sequences
for (b) and (c), the use of R1 in the branch condition prevents the DADD instruction
(whose destination is R1) from being moved after the branch. In (b) the branch delay
slot is scheduled from the target of the branch; usually the target instruction will need
to be copied because it can be reached by another path. Strategy (b) is preferred when
the branch is taken with high probability, such as a loop branch. Finally, the branch may
be scheduled from the not-taken fall-through as in (c). To make this optimization legal
for (b) or (c), it must be OK to execute the moved instruction when the branch goes in
the unexpected direction. By OK we mean that the work is wasted, but the program will
still execute correctly. This is the case, for example, in (c) if R7 were an unused tempo-
rary register when the branch goes in the unexpected direction.

A.2 The Major Hurdle of Pipelining—Pipeline Hazards A-25

normally be with a delayed branch. When the branch is incorrectly predicted, the
instruction in the branch delay slot is simply turned into a no-op.

Performance of Branch Schemes

What is the effective performance of each of these schemes? The effective pipe-
line speedup with branch penaities, assuming an ideal CPL of 1, is

Pipeline depth

Pipeli dup =
tpeline speedup 1 + Pipeline stall cycles from branches

Because of the following:
Pipeline stall cycles from branches = Branch frequency X Branch penalty

we obtain

Pipeline depth
1 + Branch frequency x Branch penalty

Pipeline speedup =

The branch frequency and branch penalty can have a component from both
unconditional and conditional branches. However, the latter dominate since they
are more frequent.

Example

For a deeper pipeline, such as that in a MIPS R4000, it takes at least three pipe-
line stages before the branch-target address is known and an additional cycle
before the branch condition is evaluated, assuming no stalls on the registers in the
conditional comparison. A three-stage delay leads to the branch penalties for the
three simplest prediction schemes listed in Figure A.15.

Find the effective addition to the CPI arising from branches for this pipeline,
assuming the following frequencies:

Unconditional branch 4%

Conditional branch, untaken 6%

Conditional branch, taken 10%
Branch scheme Penalty unconditional Penalty untaken Penalty taken
Flush pipeline 2 3 3
Predicted taken 2 3 2
Predicted untaken 2 0 3

Figure A.15 Branch penalties for the three simplest prediction schemes for a deeper pipeline.

A-26 Appendix A

Pipelining: Basic and Intermediate Concepts

Additions to the CPI from branch costs

Unconditional Untaken conditional Taken conditional
Branch scheme branches branches branches All branches
Frequency of event 4% 6% 10% 20% -
Stall pipeline 0.08 0.18 0.30 0.56
Predicted taken 0.08 0.18 0.20 0.46
Predicted untaken 0.08 0.00 0.30 0.38

Figure A.16 CPIl penalties for three branch-prediction schemes and a deeper pipeline.

Answer

A3

We find the CPIs by multiplying the relative frequency of unconditional, cond:-
tional untaken, and conditional taken branches by the respective penalties. The
results are shown in Figure A.16.

The differences among the schemes are substantially increased with this
longer delay. If the base CPI were 1 and branches were the only source of stalls,
the ideal pipeline would be 1.56 times faster than a pipeline that used the stali-
pipeline scheme. The predicted-untaken scheme would be 1.13 times better than
the stall-pipeline scheme under the same assumptions.

How Is Pipelining Implemented?

Before we proceed to basic pipelining, we need to review a simple implementa-
tion of an unpipelined version of MIPS.

A Simple Implementation of MIPS

In this section we follow the style of Section A.1, showing first a simple unpipe-
lined implementation and then the pipelined implementation. This time, however,
our example is specific to the MIPS architecture.

In this subsection we focus on a pipeline for an integer subset of MIPS that
consists of load-store word, branch equal zero, and integer ALU operations. Later
in this appendix, we will incorporate the basic floating-point operations.
Although we discuss only a subset of MIPS, the basic principles can be extended
to handle all the instructions. We initially used a less aggressive implementation
of a branch instruction. We show how to implement the more aggressive version
at the end of this section.

Every MIPS instruction can be implemented in at most 5 clock cycles. The 5
clock cycles are as follows.

1. Instruction fetch cycle (IF):

IR «- Mem[PC];
NPC « PC + 4;

A.3 How Is Pipelining Implemented? = A-27

Operation: Send out the PC and fetch the instruction from memory into the
instruction register (IR); increment the PC by 4 to address the next sequential
instruction. The IR is used to hold the instruction that will be needed on sub-
sequent clock cycles; likewise the register NPC is used to hold the next
sequential PC.

. Instruction decode/register fetch cycle (ID):

A « Regs[rs];
B « Regs[rt];
Imm « sign-extended immediate field of IR;

Operation: Decode the instruction and access the register file to read the
registers (rs and rt are the register specifiers). The outputs of the general-
purpose registers are read into two temporary registers (A and B) for use in
later clock cycles. The lower 16 bits of the IR are also sign extended and
stored into the temporary register Imm, for use in the next cycle.

Decoding is done in parallel with reading registers, which is possible
because these fields are at a fixed location in the MIPS instruction format
(see Figure B.22 on page B-35). Because the immediate portion of an
instruction is located in an identical place in every MIPS format, the sign-
extended immediate is also calculated during this cycle in case it is needed
in the next cycle.

. Execution/effective address cycle (EX):

The ALU operates on the operands prepared in the prior cycle, performing
one of four functions depending on the MIPS instruction type.

m Memory reference:
ALUQutput « A + Imm;

Operation: The ALU adds the operands to form the effective address and
places the result into the register ALUOutput.

m Register-Register ALU instruction:
ALUQutput « A func B;

Operation: The ALU performs the operation specified by the function code
on the value in register A and on the value in register B. The result is placed
in the temporary register ALUOutput.

s Register-Immediate ALU instruction:
ALUQutput « A op Imm;

Operation: The ALU performs the operation specified by the opcode on the
value in register A and on the value in register Imm. The result is placed in
the temporary register ALUOutput.

m Branch:

ALUQutput « NPC + (Imm << 2);
Cond « (A == 0)

A-28 Appendix A Pipelining: Basic and Intermediate Concepts

Operation: The ALU adds the NPC to the sign-extended immediate value in
Imm, which is shifted left by 2 bits to create a word offset, to compute the
address of the branch target. Register A, which has been read in the prior
cycle, is checked to determine whether the branch is taken. Since we are
considering only one form of branch (BEQZ), the comparison is against 0.
Note that BEQZ is actually a pseudoinstruction that translates to a BEQ with
RO as an operand. For simplicity, this is the only form of branch we con-
sider.

The load-store architecture of MIPS means that effective address and
execution cycles can be combined into a single clock cycle, since no instruc-
tion needs to simultaneously calculate a data address, calculate an instruc-
tion target address, and perform an operation on the data. The other integer
instructions not included above are jumps of various forms, which are simi-
lar to branches.

4. Memory access/branch completion cycle (MEM):
The PC is updated for all instructions: PC « NPC;
m Memory reference:

LMD « Mem[ALUOutput] or
Mem[ALUOutput] « B;

Operation: Access memory if needed. If instruction is a load, data returns
from memory and is placed in the LMD (load memory data) register; if it is
a store, then the data from the B register is written into memory. In either
case the address used is the one computed during the prior cycle and stored
in the register ALUOutput.
m Branch:

if (cond) PC « ALUQutput
Operation: If the instruction branches, the PC is replaced with the branch
destination address in the register ALUOutput.

5. Write-back cycle (WB):

s Register-Register ALU instruction:

Regs[rd] « ALUQutput;
» Register-Immediate ALU instruction:

Regs[rt] « ALUOutput;
s Load instruction:

Regs[rt] « LMD;
Operation: Write the result into the register file, whether it comes from the
memory system (which is in LMD) or from the ALU (which is in ALUOut-

put); the register destination field is also in one of two positions (rd or rt)
depending on the effective opcode.

A.3 How Is Pipelining Implemented? A-29

Figure A.17 shows how an instruction flows through the data path. At the end
of each clock cycle, everv value computed during that clock cycle and required
on a later clock cycle (whether for this instruction or the next) is written into a
storage device, which may be memory, a general-purpose register, the PC, or a
temporary register (i.e.. LMD, Imm, A, B, IR, NPC, ALUOutput, or Cond). The
temporary registers hold values between clock cycles for one instruction, while
the other storage elements are visible parts of the state and hold values between
successive instructions.

Although all processors today are pipelined, this multicycle implementation
is a reasonable approximation of how most processors would have been imple-
mented in earlier times. A simple finite-state machine could be used to implement
the control following the 5-cycle structure shown above. For a much more com-
plex processor, microcode control could be used. In either event, an instruction
sequence like that above would determine the structure of the control.

: : Execute/ :
Instruction fetch : Instruction decode/ : address Memory Write
register fetch . calculation v access back
M
u
X
NPC
ol Zero? BranchC J :
N T 2877 Taken| M
PC - M
: : u
Instruction ——_.Jﬂ > M
e ; Registers [" o
memory - ALU| [ALU |
= ™ loutput [1]
Br T u - Data LMD M
X memory u
- X

Figure A.17 The implementation of the MIPS data path allows every instruction to be executed in 4 or 5 clock
cycles. Although the PC is shown in the portion of the data path that is used in instruction fetch and the registers are
shown in the portion of the data path that is used in instruction decode/register fetch, both of these functional units
are read as well as written by an instruction. Although we show these functional units in the cycle corresponding to
where they are read, the PC is written during the memory access clock cycle and the registers are written during the
write-back clock cycle. In both cases, the writes in later pipe stages are indicated by the multiplexer output (in mem-
ory access or write back), which carries a value back to the PC or registers. These backward-flowing signals introduce
much of the complexity of pipelining, since they indicate the possibility of hazards.

A-30

Appendix A Pipelining: Basic and Intermediate Concepts

There are some hardware redundancies that could be eliminated in this multi-
cycle implementation. For example, there are two ALUs: one to increment the PC
and one used for effective address and ALU computation. Since they are not
needed on the same clock cycle, we could merge them by adding additional mul-
tiplexers and sharing the same ALU. Likewise, instructions and data could be
stored in the same memory, since the data and instruction accesses happen on dif-
ferent clock cycles.

Rather than optimize this simple implementation, we will leave the design as
it is in Figure A.17, since this provides us with a better base for the pipelined
implementation.

As an alternative to the multicycle design discussed in this section, we could
also have implemented the CPU so that every instruction takes 1 long clock
cycle. In such cases, the temporary registers would be deleted, since there would
not be any communication across clock cycles within an instruction. Every
instruction would execute in 1 long clock cycle, writing the result into the data
memory, registers, or PC at the end of the clock cycle. The CPI would be one for
such a processor. The clock cycle, however, would be roughly equal to five times
the clock cycle of the multicycle processor, since every instruction would need to
traverse all the functional units. Designers would never use this single-cycle
implementation for two reasons. First, a single-cycle implementation would be
very inefficient for most CPUs that have a reasonable variation among the
amount of work, and hence in the clock cycle time, needed for different instruc-
tions. Second, a single-cycle implementation requires the duplication of func-
tional units that could be shared in a multicycle implementation. Nonetheless,
this single-cycle data path allows us to illustrate how pipelining can improve the
clock cycle time, as opposed to the CPI, of a processor.

A Basic Pipeline for MIPS

As before, we can pipeline the data path of Figure A.17 with almost no changes
by starting a new instruction on each clock cycle. Because every pipe stage is
active on every clock cycle, all operations in a pipe stage must complete in |
clock cycle and any combination of operations must be able to occur at once.
Furthermore, pipelining the data path requires that values passed from one pipe
stage to the next must be placed in registers. Figure A.18 shows the MIPS pipe-
line with the appropriate registers, called pipeline registers or pipeline latches.
between each pipeline stage. The registers are labeled with the names of the
stages they connect. Figure A.18 is drawn so that connections through the pipe-
line registers from one stage to another are clear.

All of the registers needed to hold values temporarily between clock cycles
within one instruction are subsumed into these pipeline registers. The fields of
the instruction register (IR), which is part of the IF/ID register, are labeled when
they are used to supply register names. The pipeline registers carry both data and
control from one pipeline stage to the next. Any value needed on a later pipeline
stage must be placed in such a register and copied from one pipeline register to

A.3 How Is Pipelining Implemented? A-31

l@]_[_)_/EX EX/MEM MEM/WB
"'“ U ——
4
LM
u Branch
X taken
IRs._10
PC
. IRyy.15
instruction| IR)
memory —4 MEMWE.IR Registers
. Data

memory |
—t

—_“\——‘
16 g 32

W
L L] L L__‘

Figure A.18 The data path is pipelined by adding a set of registers, one between each pair of pipe stages. The
registers serve to convey values and control information from one stage to the next. We can also think of the PCas a
pipeline register, which sits before the IF stage of the pipeline, leading to one pipeline register for each pipe stage.
Recall that the PC is an edge-triggered register written at the end of the clock cycle; hence there is no race condition
in writing the PC.The selection multiplexer for the PC has been moved so that the PC is written in exactly one stage
(IF). If we didn’t move it, there would be a conflict when a branch occurred, since two instructions would try to write
different values into the PC. Most of the data paths flow from left to right, which is from earlier in time to later. The
paths flowing from right to left (which carry the register write-back information and PC information on a branch)
introduce complications into our pipeline.

L
E:E

the next, until it is no longer needed. If we tried to just use the temporary registers
we had in our earlier unpipelined data path, values could be overwritten before all
uses were completed. For example. the field of a register operand used for a write
on a load or ALU operation is supplied from the MEM/WB pipeline register
rather than from the [F/ID register. This is because we want a load or ALU opera-
tion to write the register designated by that operation, not the register field of the
instruction currently transitioning from IF to ID! This destination register field is
simply copied from one pipeline register to the next, until it is needed during the
WB stage.

Any instruction is active in exactly one stage of the pipeline at a time; there-
fore, any actions taken on behalf of an instruction occur between a pair of pipeline
registers. Thus, we can also look at the activities of the pipeline by examining
what has to happen on any pipeline stage depending on the instruction type. Fig-
ure A.19 shows this view. Fields of the pipeline registers are named so as to show
the flow of data from one stage to the next. Notice that the actions in the first two
stages are independent of the current instruction type; they must be independent
because the instruction is not decoded until the end of the ID stage. The IF activity

A-32 Appendix A Pipelining: Basic and Intermediate Concepts

Stage

IF IF/ID.IR « Mem[PC];
IF/ID.NPC,PC « (if ((EX/MEM.opcode == branch) & EX/MEM. cond) {EX/MEM.
ALUOutput} else {PC+4}};

ID ID/EX.A « Regs[IF/ID.IR[rs]]; ID/EX.B « Regs[IF/ID.IR[rt]];
ID/EX.NPC « IF/ID.NPC; ID/EX.IR « IF/ID.IR;
ID/EX.Imm < sign-extend(IF/ID.IR[immediate field]);

Any instruction

Load or store instruction Branch instruction

EX/MEM.IR to ID/EX.IR

ALU instruction

EX EX/MEM.IR « ID/EX.IR;
EX/MEM.ALUOutput < EX/MEM.ALUQutput «- EX/MEM.ALUOutput «
ID/EX.A func ID/EX.B; ID/EX.A + ID/EX.Imm; ID/EX.NPC +
or (ID/EX.Imm << 2);
EX/MEM.ALUOutput «
ID/EX.A op ID/EX.Imm;

EX/MEM.B « ID/EX.B; EX/MEM.cond «

(ID/EX.A == 0);
MEM MEM/WB.IR « EX/MEM.IR; MEM/WB.IR « EX/MEM.IR;
MEM/WB.ALUQutput «- MEM/WB.IMD «
EX/MEM.ALUOutput; Mem[EX/MEM.ALUOutput];
or .
Mem{EX/MEM.ALUQutput]
EX/MEM.B;
WB Regs [MEM/WB.IR[rd]] « For load only:

MEM/WB.ALUOutput;
or

Regs [MEM/WB.IR[rt]] «
MEM/WB.LMD;

Regs [MEM/WB.IR[rt]] «
MEM/WB.ALUOutput;

Figure A.19 Events on every pipe stage of the MIPS pipeline. Let's review the actions in the stages that are specific
to the pipeline organization. In IF, in addition to fetching the instruction and computing the new PC, we store the
incremented PC both into the PC and into a pipeline register (NPC) for later use in computing the branch-target
address. This structure is the same as the organization in Figure A.18, where the PC is updated in IF from one of two
sources. In ID, we fetch the registers, extend the sign of the lower 16 bits of the IR (the immediate field), and pass
along the IR and NPC. During EX, we perform an ALU operation or an address calculation: we pass along the IR and
the B register (if the instruction is a store). We also set the value of cond to 1 if the instruction is a taken branch. Dur-
ing the MEM phase, we cycle the memory, write the PC if needed, and pass along values needed in the final pipe
stage. Finally, during WB, we update the register field from either the ALU output or the loaded value. For simplicity
we always pass the entire IR from one stage to the next, although as an instruction proceeds down the pipeline, less
and less of the IR is needed.

depends on whether the instruction in EX/MEM is a taken branch. If so, then the
branch-target address of the branch instruction in EX/MEM is written into the PC
at the end of IF; otherwise the incremented PC will be written back. (As we said
earlier, this effect of branches leads to complications in the pipeline that we deal
with in the next few sections) The fixed-position encoding of the register source
operands is critical to allowing the registers to be fetched during ID.

A.3 How Is Pipelining Implemented? A-33

To control this simple pipeline we need only determine how to set the control
for the four multiplexers in the data path of Figure A.18. The two multiplexers in
the ALU stage are set depending on the instruction type. which is dictated by the
IR field of the ID/EX register. The top ALU input multiplexer is set by whether
the instruction is a branch or not, and the bottorn multiplexer is set by whether the
instruction is a register-register ALU operation or any other type of operation.
The multiplexer in the IF stage chooses whether to use the value of the incre-
mented PC or the value of the EX/MEM.ALUOutput (the branch target) to write
into the PC. This multiplexer is controlled by the field EX/MEM.cond. The
fourth multiplexer is controlled by whether the instruction in the WB stage is a
load or an ALU operation. In addition to these four multiplexers, there is one
additional multiplexer needed that is not drawn in Figure A.18, but whose exist-
ence is clear from looking at the WB stage of an ALU operation. The destination
register field is in one of two different places depending on the instruction type
(register-register ALU versus either ALU immediate or load). Thus, we will need
a multiplexer to choose the correct portion of the IR in the MEM/WB register to
specify the register destination field. assuming the instruction writes a register.

Implementing the Control for the MIPS Pipeline

The process of letting an instruction move from the instruction decode stage (ID)
into the execution stage (EX) of this pipeline s usually called instruction issue;
an instruction that has made this step is said t have issued. For the MIPS integer
pipeline, all the data hazards can be checked during the ID phase of the pipeline.
If a data hazard exists, the instruction is stalled before it is issued. Likewise, we
can determine what forwarding will be needed during ID and set the appropriate
controls then. Detecting interiocks early in the pipeline reduces the hardware
complexity because the hardware never has to suspend an instruction that has
updated the state of the processor. unless the entire processor is stalled. Alterna-
tively, we can detect the hazard or forwarding at the beginning of a clock cycle
that uses an operand (EX and MEM for this pipeline). To show the differences in
these two approaches. we will show how the interlock for a RAW hazard with the
source coming from a load instruction (called a load interlock) can be imple-
mented by a check in ID, while the implementation of forwarding paths to the
ALU inputs can be done during EX. Figure A.2C lists the variety of circum-
stances that we must handle.

Let’s start with implementing the load interlock. If there is a RAW hazard
with the source instruction being a load. the load instruction will be in the EX
stage when an instruction that needs the load data will be in the ID stage. Thus,
we can describe all the possible hazard situations with a small table, which can be
directly translated to an implementation. Figure A.21 shows a table that detects
all load interlocks when the instruction using the load result is in the ID stage.

Once a hazard has been detected. the control unit must insert the pipeline stall
and prevent the instructions in the IF and ID stages from advancing. As we said
earlier. all the control information is carried in the pipeline registers. (Carrying

A-34

Appendix A Pipelining: Basic and Intermediate Concepts

Example code
Situation sequence Action

No dependence LD R1,45(R2) No hazard possible because no dependence
DADD R5,R6,R7 exists on R1 in the immediately following

DSUB R8,R6,R7 three instructions.

OR R9,R6,R7
Dependence LD R1,45(R2) Comparators detect the use of R1 in the DADD
requiring stall DADD R5,R1,R7 and stall the DADD (and DSUB and OR) before

DSUB R8,R6,R7 the DADD begins EX.
OR R9,R6,R7

Dependence LD R1,45(R2) Comparators detect use of R1 in DSUB and
overcome by DADD R5,R6,R7 forward result of load to ALU in time for DSUB
forwarding DSUB R8,R1,R7 to begin EX.

OR R9,R6,R7

Dependence with LD R1,45(R2) No action required because the read of R1 by

accesses in order DADD R5,R6,R7 OR occurs in the second half of the ID phase,
DSUB R8,R6,R7 while the write of the loaded data occurred in
OR R9,R1,R7 the first half.

Figure A.20 Situations that the pipeline hazard detection hardware can see by corn-
paring the destination and sources of adjacent instructions. This table indicates that
the only comparison needed is between the destination and the sources on the two
instructions following the instruction that wrote the destination. In the case of a stall,
the pipeline dependences will look like the third case once execution continues. Of
course hazards that involve RO can be ignored since the register always contains 0, and
the test above could be extended to do this.

Opcode field of ID/EX Opcode field of IF/ID

(ID/EX.IRg_.5) (IF/ID.IRg, 5) Matching operand fields

Load Register-register ALU ID/EX.IR[rt] == IF/
ID.IR[rs]

Load Register-register ALU ID/EX.IR[rt] ==IF/
ID.IR[rt]

Load Load, store, ALU immediate, ID/EX.IR[rt] ==IF/

or branch ID.IR[rs]

Figure A.21 The logic to detect the need for load interlocks during the ID stage of
an instruction requires three comparisons. Lines 1 and 2 of the table test whether the
load destination register is one of the source registers for a register-register operation
in ID.Line 3 of the table determines if the load destination register is a source for a load
or store effective address, an ALU immediate, or a branch test. Remember that the IF/ID
register holds the state of the instruction in ID, which potentially uses the load result,
while ID/EX holds the state of the instruction in EX, which is the load instruction.

the instruction along is enough, since all control is derived from it.) Thus, when
we detect a hazard we need only change the control portion of the ID/EX pipeline
register to all Os, which happens to be a no-op (an instruction that does nothing,

A.3 How Is Pipelining Implemented? A-35

such as DADD RO,RO,R0). In addition, we simply recirculate the contents of the
IF/ID registers to hold the stalled instruction. In a pipeline with more complex
hazards, the same ideas would apply: We can detect the hazard by comparing
some set of pipeline registers and shift in no-ops to prevent erroneous execution.

Implementing the forwarding logic is similar, although there are more cases
to consider. The key observation needed to implement the forwarding logic is that
the pipeline registers contain both the data to be forwarded as well as the source
and destination register fields. All forwarding logically happens from the ALU or
data memory output to the ALU input, the data memory input, or the zero detec-
tion unit. Thus, we can implement the forwarding by a comparison of the destina-
tion registers of the IR contained in the EX/MEM and MEM/WB stages against
the source registers of the IR contained in the ID/EX and EX/MEM registers.
Figure A.22 shows the comparisons and possible forwarding operations where
the destination of the forwarded result is an ALU input for the instruction cur-
rently in EX.

In addition to the comparators and combinational logic that we need to deter-
mine when a forwarding path needs to be enabled, we also need to enlarge the
multiplexers at the ALU inputs and add the connections from the pipeline regis-
ters that are used to forward the results. Figure A.23 shows the relevant segments
of the pipelined data path with the additional multiplexers and connections in
place.

For MIPS, the hazard detection and forwarding hardware is reasonably sim-
ple; we will see that things become somewhat more complicated when we
extend this pipeline to deal with floating point. Before we do that, we need to
handle branches.

Dealing with Branches in the Pipeline

In MIPS, the branches (BEQ and BNE) require testing a register for equality to
another register, which may be RO. If we consider only the cases of BEQZ and
BNEZ, which require a zero test, it is possible to complete this decision by the end
of the ID cycle by moving the zero test into that cycle. To take advantage of an
early decision on whether the branch is taken, both PCs (taken and untaken) must
be computed early. Computing the branch-target address during ID requires an
additional adder because the main ALU, which has been used for this function so
far, is not usable until EX. Figure A.24 shows the revised pipelined data path.
With the separate adder and a branch decision made during ID, there is only a 1-
clock-cycle stall on branches. Although this reduces the branch delay to 1 cycle,
it means that an ALU instruction followed by a branch on the result of the
instruction will incur a data hazard stall. Figure A.25 shows the branch portion of
the revised pipeline table from Figure A.19.

In some processors, branch hazards are even more expensive in clock cycles
than in our example, since the time to evaluate the branch condition and compute
the destination can be even longer. For example, a processor with separate decode
and register fetch stages will probably have a branch delay—the length of the
control hazard—that is at least 1 clock cycle longer. The branch delay, unless it is

A-36 Appendix A Pipelining: Basic and Intermediate Concepts

Pipeline
register Destination
Pipeline register Opcode containing of the
containing source of source destination Opcode of destination forwarded Comparison (if
instruction instruction instruction instruction result equal then forward)
EX/MEM Register- ID/EX Register-register ALU, Top ALU EX/MEM.IR[rd] ==
register ALU ALU immediate, load. input ID/EX.IR[rs]
store, branch
EX/MEM Register- ID/EX Register-register ALU Bottom ALU EX/MEM.IR[rd] ==
register ALU input ID/EX.IR [rt]
MEM/WB Register- ID/EX Register-register ALU, Top ALU MEM/WB.IR[rd] ==
register ALU ALU immediate, load, input ID/EX.IR[rs]
store, branch
MEM/WB Register- ID/EX Register-register ALU Bottom ALU MEM/WB.IR[rd] ==
register ALU input ID/EX.IR[rt]
EX/MEM ALU ID/EX Register-register ALU, Top ALU EX/MEM.IR[rt] ==
immediate ALU immediate, load, input ID/EX.IR[rs]
store, branch
EX/MEM ALU ID/EX Register-register ALU Bottom ALU EX/MEM.IR[rt] ==
immediate input ID/EX.IR[rt]
MEM/WB ALU ID/EX Register-register ALU, Top ALU MEM/WB.IR[rt] ==
immediate ALU immediate, load, input ID/EX.IR[rs]
store, branch
MEM/WB ALU ID/EX Register-register ALU Bottom ALU MEM/WBLIR[rt] ==
immediate input ID/EX.IR{rt]
MEM/WB Load ID/EX Register-register ALU, Top ALU MEM/WB.IR[rt] ==
ALU immediate, load, input ID/EX.IR{rs]
store, branch
MEM/WB Load ID/EX Register-register ALU ~ Bottom ALU MEM/WBL.IR[rt] ==

input ID/EX.IR[rt]

Figure A.22 Forwarding of data to the two ALU inputs (for the instruction in EX) can occur from the ALU result
(in EX/MEM or in MEM/WB) or from the load result in MEM/WB. There are 10 separate comparisons needed to tell
whether a forwarding operation should occur. The top and bottom ALU inputs refer to the inputs corresponding to
the first and second ALU source operands, respectively, and are shown explicitly in Figure A.17 on page A-29 and in
Figure A.23 on page A-37. Remember that the pipeline latch for destination instruction in EX is ID/EX, while the
source values come from the ALUOutput portion of EX/MEM or MEM/WB or the LMD portion of MEM/WB. There is
one complication not addressed by this logic: dealing with muitiple instructions that write the same register. For
example, during the code sequence DADD R1, R2, R3; DADDI R1, R1, #2; DSUB R4, R3, R1, the logic must ensure
that the DSUB instruction uses the result of the DADDI instruction rather than the result of the DADD instruction. The
logic shown above can be extended to handle this case by simply testing that forwarding from MEM/WB is enabled
only when forwarding from EX/MEM is not enabled for the same input. Because the DADDI result will be in EX/MEM, it
will be forwarded, rather than the DADD result in MEM/WB.

dealt with, turns into a branch penalty. Many older CPUs that implement more
complex instruction sets have branch delays of 4 clock cycles or more. and large,
deeply pipelined processors often have branch penalties of 6 or 7. In general, the

A4

A4 What Makes Pipelining Hard to Implement? A-37

{G/EX EXMEM MEM/WB

r """""""""" H
s o] Zero? b e
e | i
TN e
M I
iu o
PoX 1_' S
[- -~
i | : “
AN ; |
N . :
SNooan b L;I._-
- A | 5 :
7 o] - ; ata :
| / memory Le

‘f‘ 4

——] @

Figure A.23 Forwarding of results to the ALU requires the addition of three extra
inputs on each ALU multiplexer and the addition of three paths to the new inputs.
The paths correspond to a bypass of (1) the ALU output at the end of the EX, (2) the ALU
output at the end of the MEM stage, and {3) the memory output at the end of the MEM
stage.

deeper the pipeline, the worse the branch penalty in clock cycles. Of course, the
relative performance effect of a longer branch penalty depends on the overall CPI
of the processor. A low-CPl processor can afford to have more expensive
branches because the percentage of the processor’s performance that will be lost
from branches is less.

What Makes Pipelining Hard to Implement?

Now that we understand how to deteet and resolve hazards, we can deal with
some complications that we have avoided so far. The first part of this section
considers the challenges of excepticnal situations where the instruction execution
order is changed in unexpected ways. In the second part of this section, we dis-
cuss some of the challenges raised by different instruction sets.

Dealing with Exceptions

Exceptional situations are harder to handic in a pipelined CPU bhecause the over-
lapping of instructions makes it more difficult to know whether an instruction can

A-38 Appendix A Pipelining: Basic and Intermediate Concepts

} IDEX
Rl

DI
L EX/MEM MEM/WB

Zero?

'RG 10

’HH 15
Instruction b .
memory MEM/WB.(R | Registers

Data
memory —= L
u
X
16 _ggn\ 32

exte? —————»]

L] L] L]

Figure A.24 The stall from branch hazards can be reduced by moving the zero test and branch-target calcula-
tion into the ID phase of the pipeline. Notice that we have made two important changes, each of which removes 1
cycle from the 3-cycle stall for branches. The first change is to move both the branch-target address calculation and
the branch condition decision to the ID cycle.The second change is to write the PC of the instruction in the IF phase,
using either the branch-target address computed during 1D or the incremented PC computed during IF. In compari-
son, Figure A.18 obtained the branch-target address from the EX/MEM register and wrote the result during the MEM
clock cycle. As mentioned in Figure A.18, the PC can be thought of as a pipeline register (e.g., as part of ID/IF), which
is written with the address of the next instruction at the end of each IF cycle.

safely change the state of the CPU. In a pipelined CPU, an instruction is executed
piece by piece and is not completed for several clock cycles. Unfortunately, other
instructions in the pipeline can raise exceptions that may force the CPU to abort
the instructions in the pipeline before they complete. Before we discuss these
problems and their solutions in detail, we need to understand what types of situa-
tions can arise and what architectural requirements exist for supporting them.

Types of Exceptions and Requirements

The terminology used to describe exceptional situations where the normal execu-
tion order of instruction is changed varies among CPUs. The terms interrupt,
Sault, and exception are used. although not in a consistent fashion. We use the
term exception to cover all these mechanisms, including the following:

a /O device request

m Invoking an operating system service from a user program

A4 What Makes Pipelining Hard to Implement? A-39

Pipe stage Branch instruction

IF IF/ID.IR « Mem[PC];
IF/ID.NPC,PC « (if ((IF/ID.opcode == branch) & (Regs[IF/ID.IR; .l
op 0)) {IF/ID.NPC + sign-extended (IF/ID.IR[immediate field] <<2) else {PC+4});

1D ID/EX.A « Regs[IF/ID.IRs 1,]; ID/EX.B ¢ Regs[IF/ID.IRyy 1513
ID/EX.IR « IF/ID.IR;
ID/EX.Imm « (IF/ID.IR) S##1F/ID.IRys 4

EX
MEM
WB

Figure A.25 This revised pipeline structure is based on the original in Figure A.19. it uses a separate adder, as in
Figure A.24, to compute the branch-target address during ID. The operations that are new or have changed are in
bold. Because the branch-target address addition happens during ID, it will happen for all instructions; the branch
condition {Regs[IF/ID.IRg ;4] op 0) will also be done for all instructions. The selection of the sequential PC or the
branch-target PC still occurs during IF, but it now uses values from the ID stage, which correspond to the values set
by the previous instruction. This change reduces the branch penalty by 2 cycles: one from evaluating the branch tar-
get and condition earlier and one from controlling the PC selection on the same clock rather than on the next clock.
Since the value of cond is set to 0, unless the instruction in ID is a taken branch, the processor must decode the
instruction before the end of ID. Because the branch is done by the end of ID, the EX, MEM, and WB stages are unused
for branches. An additional complication arises for jumps that have a longer offset than branches.We can resolve this
by using an additional adder that sums the PC and lower 26 bits of the IR after shifting left by 2 bits.

m Tracing instruction execution
= Breakpoint (programmer-requested interrupt)
s Integer arithmetic overflow
s FP arithmetic anomaly
m Page fault (not in main memory)
m Misaligned memory accesses (if alignment is required)
® Memory protection violation
m Using an undefined or unimplemented instruction
s Hardware malfunctions
m Power failure
When we wish to refer to some particular class of such exceptions, we will use
a longer name. such as /O interrupt, floating-point exception, or page fault.
Figure A.26 shows the variety of different names for the common exception
events above.
Although we use the term exception to cover all of these events, individual
events have important characteristics that determine what action is needed in the

hardware. The requirements on exceptions can be characterized on five semi-
independent axes:

A-40

Appendix A Pipelining: Basic and Intermediate Concepts

Exception event IBM 360 VAX Motorola 680x0 Intel 80x86

1/0 device request Input/output Device interrupt Exception (level 0...7 Vectored interrupt
interruption autovector)

Invoking the operating ~ Supervisor call Exception (change Exception Interrupt

system service froma interruption mode supervisor trap) (unimplemented (INT instruction)

user program instruction)-—

on Macintosh

Tracing instruction
execution

Not applicable

Exception (trace fault)

Exception (trace)

Interrupt (single-
step trap)

Breakpoint

Not applicable

Exception
(breakpoint fault)

Exception (illegal
instruction or
breakpoint)

Interrupt
(breakpoint trap)

Integer arithmetic
overflow or underflow;
FP trap

Program interruption
(overflow or
underflow exception)

Exception (integer
overflow trap or
floating underflow
fault)

Exception
(floating-point
COpProcessor errors)

Interrupt (overflow
trap or math unit
exception)

Page fault
(not in main memory)

Not applicable
(only in 370)

Exception (translation
not valid fault)

Exception (memory-
management unit
errors)

Interrupt
(page fault)

Misaligned memory Program interruption Not applicable Exception Not applicable
accesses (specification (address error)
exception)
Memory protection Program interruption Exception (access Exception Interrupt
violations (protection exception) control violation (bus error) (protection
fault) exception)
Using undefined Program interruption Exception (opcode Exception (illegal Interrupt (invalid
mstructions (operation exception) privileged/reserved instruction or break- opcode)
fault) point/unimplemented
instruction)
Hardware Machine-check Exception (machine- Exception Not applicable
malfunctions interruption check abort) (bus error)
Power failure Machine-check Urgent interrupt Not applicable Nonmaskable
interruption interrupt

Figure A.26 The names of common exceptions vary across four different architectures. Every event on the 1BM
360 and 80x86 is called an interrupt, while every event on the 680x0 is called an exception. VAX divides events into
interrupts or exceptions. Adjectives device, software, and urgent are used with VAX interrupts, while VAX exceptions are
subdivided into faults, traps, and aborts.

1. Svnchronous versus asynchronous—If the event occurs at the same place
every time the program is executed with the same data and memory alloca-
tion. the event is synchronous. With the exception of hardware malfunctions.
asynchronous events are caused by devices external to the CPU and memory.
Asynchronous events usually can be handled after the completion of the
current instruction, which makes them easier to handle.

2. User requested versus coerced—If the user task directly asks for it. it is a
user-requested event. In some sense, user-requested exceptions are not really

A.4 What Makes Pipelining Hard to Implement? A-41

exceptions, since they are predictable. They are treated as exceptions, how-
ever, because the same mechanisms that are used to save and restore the state
are used for these user-requested events. Because the only function of an
instruction that triggers this exception is to cause the exception, user-
requested exceptions can always be handled after the instruction has com-
pleted. Coerced exceptions are caused by some hardware event that is not
under the control of the user program. Coerced exceptions are harder to
implement because they are not predictable.

3. User maskable versus user nonmaskable—If an event can be masked or dis-
abled by a user tusk, it is user maskable. This mask simply controls whether
the hardware responds to the exception or not.

4. Within versus between instructions—-This classification depends on whether
the event prevents instruction completion by occurring in the middle of exe-
cution—no matter how short—or whether it is recognized between instruc-
tions. Exceptions that occur within instructions are usually synchronous,
since the instruction triggers the exception. It’s harder to implement excep-
tions that occur within instructions than those between instructions, since the
instruction must be stopped and restarted. Asynchronous exceptions that
occur within instructions arise from catastrophic situations (e.g., hardware
malfunction) and always cause program termination.

5. Resume versus terminate—If the program’s execution always stops after the
interrupt, it is a terminating event. If the program’s execution continues after
the interrupt, it is a resuming event. It is easier to implement exceptions that
terminate execution, since the CPU need not be able to restart execution of
the same program after handling the exception.

Figure A.27 classifies the examples from Figure A.26 according to these five
categories. The difficult task is implementing interrupts occurring within instruc-
tions where the instruction must be resumed. Implementing such exceptions
requires that another program must be invoked to save the state of the executing
program, correct the cause of the exception, and then restore the state of the pro-
gram before the instruction that caused the exception can be tried again. This pro-
cess must be effectively invisible to the executing program. If a pipeline provides
the ability for the processor to handle the exception, save the state, and restart
without affecting the execution of the program, the pipeline or processor is said
to be restartable. While early supercomputers and microprocessors often lacked
this property, almost all processors today support it, at least for the integer pipe-
line, because it is needed to implement virtual memory (see Chapter 5).

Stopping and Restarting Execution

As in unpipelined implementations, the most difficult exceptions have two prop-
erties: (1) they occur within instructions (that is, in the middle of the instruction
execution corresponding to EX or MEM pipe stages), and (2) they must be
restartable. In our MIPS pipeline, for example, a virtual memory page fault
resulting from a data fetch cannot occur until sometime in the MEM stage of the

A-42

Appendix A Pipelining: Busic and Intermediate Concepts

User Within vs.
Synchronousvs. User request maskable vs. between Resume vs.

Exception type asynchronous vs. coerced nonmaskable instructions terminate
[/O device request Asynchronous Coerced Nonmaskable Between Resume
Invoke operating system Synchronous User requesi Nonmaskable Between Resume
Tracing instruction execution Synchronous User request User maskable Between Resume
Breakpoint Synchronous User request User maskable Between Resume
Integer arithmetic overflow Synchronous Coerced User maskable Within Resume
Floating-point arithmetic Synchronous Coerced User maskable Within Resume
overflow or underflow

Page fault Synchronous Coerced Nonmaskable Within Resume
Misaligned memory accesses Synchronous Coerced User maskable Within Resume
Memory protection violations ~ Synchronous Coerced Nonmaskable Within Resume
Using undefined instructions Synchronous Coerced Nonmaskable Within Terminate
Hardware malfunctions Asynchronous Coerced Nonmaskable Within Terminate
Power failure Asynchronous Coerced Nonmaskable Within Terminate

Figure A.27 Five categories
in Figure A.26. Exceptions t
choose to terminate the pr

are used to define what actions are needed for the different exception types shown
hat must allow resumption are marked as resume, although the software may often
ogram. Synchronous, coerced exceptions occurring within instructions that can be

resumed are the most difficult to implement. We might expect that memory protection access violations would

always result in termination;
the first attempt to use a pag

however, modern operating systems use memory protection to detect events such as
e or the first write to a page.Thus, CPUs should be able to resume after such exceptions.

instruction. By the time that fault is seen, several other instructions will be in exe-
cution. A page fault must be restartable and requires the intervention of another
process. such as the operating system. Thus, the pipeline must be safely shut
down and the state saved so that the instruction can be restarted in the correct
state. Restarting is usually implemented by saving the PC of the instruction at
which to restart. If the restarted instruction is not a branch, then we will continue
to fetch the sequential successors and begin their execution in the normal fashion.
If the restarted instruction is a branch, then we will reevaluate the branch condi-
tion and begin fetching from either the target or the fall-through. When an excep-
tion occurs, the pipeline control can take the following steps to save the pipeline
state safely:

1. Force a trap instruction into the pipeline on the next IF.

2. Until the trap is taken, turn off all writes for the faulting instruction and for all
instructions that follow in the pipeline: this can be done by placing zeros into
the pipeline latches of all instructions in the pipeline, starting with the
instruction that generates the exception, but not those that precede that
instruction. This prevents any state changes for instructions that will not be
completed before the exception is handled.

A.4 What Makes Pipelining Hard to Implement? A-43

3. After the exception-handling routine in the operating system receives control,
it immediately saves the PC of the faulting instruction. This value will be
used to return from the exception later.

When we use delayed branches, as mentioned in the last section, it is no
longer possible to re-create the state of the processor with a single PC because
the instructions in the pipeline may not be sequentially related. So we need to
save and restore as many PCs as the length of the branch delay plus one. This is
done in the third step above.

After the exception has been handled, special instructions return the proces-
sor from the exception by reloading the PCs and restarting the instruction stream
(using the instruction RFE in MIPS). If the pipeline can be stopped so that the
instructions just before the faulting instruction are completed and those after it
can be restarted from scratch, the pipeline is said to have precise exceptions. Ide-
ally. the faulting instruction would not have changed the state, and correctly han-
dling some exceptions requires that the faulting instruction have no effects. For
other exceptions. such as floating-point exceptions, the faulting instruction on
some processors writes its result before the exception can be handled. In such
cases, the hardware must be prepared to retrieve the source operands, even if the
destination is identical to one of the source operands. Because floating-point
operations may run for many cycles, it is highly likely that some other instruction
may have written the source operands (as we will see in the next section, floating-
point operations often complete out of order). To overcome this, many recent
high-performance CPUs have introduced two modes of operation. One mode has
precise exceptions and the other (fast or performance mode) does not. Of course,
the precise exception mode is slower, since it allows less overlap among floating-
point instructions. In some high-performance CPUs, including Alpha 21064,
Power2, and MIPS R8000. the precise mode is often much slower (> 10 times)
and thus useful only for debugging of codes.

Supporting precise exceptions is a requirement in many systems. while in
others it is *‘just” valuable because it simplifies the operating system interface. At
a minimum, any processor with demand paging or IEEE arithmetic trap handlers
must make its exceptions precise, either in the hardware or with some software
support. For integer pipelines, the task of creating precise exceptions is easier,
and accommodating virtual memory strongly motivates the support of precise
exceptions for memory references. In practice, these reasons have led designers
and architects to always provide precise exceptions for the integer pipeline. In
this section we describe how to implement precise exceptions for the MIPS inte-
ger pipeline. We will describe techniques for handling the more complex chal-
lenges arising in the FP pipeline in Section A.S.

Exceptions in MIPS

Figure A.28 shows the MIPS pipeline stages and which “problem” exceptions
might occur in each stage. With pipelining. multiple exceptions may occur in the

A-44 Appendix A Pipelining: Busic and Intermediaie Concepts

Pipeline stage Problem exceptions occurring

IF Page fauit on instruction fetch; misaligned memory access: memory
protection violation

ID Undefined or illegal opcode

EX Arithmetic exception

MEM Page fault on dats fetch: misaligned memory access: memory
protection violation

WB None

Figure A.28 Exceptions that may occur in the MIPS pipeline. Exceptions raised from
instruction or data memory access account for six out of eight cases.

same clock cycle because there are multiple instructions in execution. For exam-
ple. consider this instruction sequence:

LD g 1D EX MEM WB
DAGD iy iD EX MEM WB

This parr of instructions can cause a dawa page fault and an arithmetic exception
at the same time. since the LD is in the MEM stage while the DADD is in the EX
stage. This case can be handled by dealing with only the data page tault and then
restarting the execution. The second exception will reoccur (but not the first, if
the software is correct). and when the second exception occurs, it can be handled
independently.

In reality. the situation is not as straightforward as this simple example.
Exceptions may occur out of order; that is, an instruction may cause an exception
before an eerlier instruction causes one. Consider again the above sequence of
instructions, LD followed by DADD. The LD can get a data page fault, seen when
the instruction is in MEM, and the DADD can get an instruction page fault, seen
when the DADD instruction is in TF. The instruction page fault will actually occur
first, even though it is caused by a later instruction'!

Since we are implementing precise exceptions. the pipeline is required to
handle the exception caused by the LD instruction first. To explain how this
works, let’s call the instruction in the position of the LD instruction i, and the
instruction in the position of the DADD instruction / 4+ 1. The pipeline cannot sim-
ply handle an exception when it occurs 1n time, since that will lead to exceptions
occurring out of the unpipelined order. Instead, the hardware posts all exceptions
caused by a given instruction in a status vector associated with that instruction.
The exception status vector is carried along as the instruction goes down the
pipeline. Once an exception indication is set in the exception status vector, any
control signal that may cause a data value to be written is turned off (this includes
both register writes and memory writes). Because a store can cause an exception
during MEM, the hardware must be prepared to prevent the store from complet-
ing if it raises an exception.

